SCPS Calculation Guide

Year 4

This guide shows illustrations and examples of the methods used to teach addition, subtraction, multiplication and division

Year 4 Addition Add numbers with up to 4 digits

Models and Representations

Bar model

Part-whole model
Place Value Counters

Base 10
Column Addition
$1,378+2,148=3,526$

Base 10 and place value counters are the most effective manipulatives when adding numbers
with up to 4 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Year 4 Subtraction Subtract numbers with up to 4 digits

Models and Representations

Bar model

Part-whole model
Place Value Counters

Base 10

Column Subtraction

$$
4,357-2,735=1,622
$$

Thousands	Hundreds	Tens	Ones

Base 10 and place value counters are the most effective manipulatives when subtracting numbers with up to 4 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Year 4 Times Tables

Skill: 6 times table												Year: 4
8 $8: 8$ 6 36 66	9 \vdots 12 42 72 0		$\begin{array}{r} \frac{24}{54} \\ \hline 84 \end{array}$			3 4 13 14 23 22 33 34 43 44 53 98 63 64 73 74 83 84 93 94		(6) 16 26 36 46 56 66 76 86 96			10 20 30 40 50 6 70 80 90 100	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
Skill: 7 times table												Year: 4
	14 49	$\frac{21}{56}$	$\frac{28}{63}$		1 2 11 12 21 22 31 32 41 12 51 52 61 62 71 72 81 82 (9) 92				7 8 17 18 27 (8) 37 38 47 48 57 58 67 68 (7) 78 87 88 97 (2) 1000		10 20 30 40 50 60 20 80 90 100	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.

Skill: 9 times table													Year: 4
-000000000-000000000-000000000-													Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
Skill: 11 times table													Year: 4
													Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

Year 4 Times Tables

Year 4 Multiplication

Multiply 2-digit numbers by 1-digit numbers

$$
34 \times 5=170
$$

Models and Representations

Hundred square

Number shapes
Counters
Bead strings

Short Multiplication

Everyday objects

Informal methods and the expanded method are used in Year 3 before moving on to the short multiplication method in Year 4.

Place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge.

Year 4 Multiplication

Multiply 3-digit numbers by 1-digit numbers

Models and Representations

Place Value Counters

Base 10

Short Written method

When moving to 3 - digit by 1 -digit multiplication, encourage children to move towards the short, formal written method.

Base 10 and place value counters continue to support the understanding of the written method.

Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers.

Year 4 Division

Divide 2-digits by 1-digit (sharing with remainders)

Models and Representations

Part-whole model
 Bar model
 Straws

Base 10
Place value counters

When dividing numbers with remainders, children can use Base 10 and place value counters to exchange one ten for ten ones.

Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made.

Flexible partitioning in a part-whole model supports this method.

Year 4 Division

Divide 2-digits by 1-digit (grouping)

$52 \div 4=13$

Models and Representations

Place Value Counters

Counters

Place Value Grid
 Written short division

When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Remainders can also be seen as they are left ungrouped.

Year 4 Division

Divide 3-digits by 1-digit (sharing with exchange)

Models and Representations

```
Base }1
Bar model
```

Place value counters Part-whole model

$856 \div 4=214$

Children can continue to use place value counters to share 3- digit numbers into equal groups.

Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight remainders.

Flexible partitioning in a part-whole model supports this method.

Year 4 Division

Divide 3-digits by 1-digit (grouping)

Models and Representations

Place Value counters

Place Value Grid

Base 10
Written Division

Children can continue to use grouping to support their understanding of short division when dividing a 3 -digit number by a 1-digit number.

Place value counters or plain counters can be used on a place value grid to support this understanding.

Children can also draw their own counters and group them through a more pictorial method.

